爱游戏app

 
 

爱游戏app官方网站手机版:【芯片】芯片先容-万通百科

浏览: 次    发布日期:2024-05-01

  2020年8月,国务院印发《新时期促进集成电路产业和软件产业高质量发展的若干政策》。从1930年代开始,元素周期表中的化学元素中的半导体被研究者如贝尔实验室的William Shockley认为是固态真空管的最可能的原料。从氧化铜到锗,再到硅,原料在1940到1950年代被系统的研究。今天,尽管元素周期表的一些III-V价化合物如砷化镓应用于特殊用途如:发光二极管,激光,太阳能电池和最高速集成电路,单晶硅成为集成电路主流的基层。创造无缺陷晶体的方法用去了数十年的时间。

  2020年8月,中芯国际最新财报显示,二季度,公司营收和净利润均创单季历史新高,实现净利润1.38亿美元,同比增长高达644.2%。通用智能芯片设计公司壁仞科技,成立仅九个月就完成总额11亿元的A轮融资。仅芯片设计企业就从2019年的1700家迅速扩大到2020年的超过2000家。主要分类集成电路(英语:integrated circuit, IC)、或称微电路(microcircuit)、 微芯片(microchip)、芯片(chip)在电子学中是一种把电路(主要包括半导体设备,也包括被动组件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动组件,集成到衬底或线路板所构成的小型化电路。本文是关于单片(monolithic)集成电路,即薄膜集成电路。

  晶体管发明并大量生产之后,各式固态半导体组件如二极管、晶体管等大量使用,取代了真空管在电路中的功能与角色。到了20世纪中后期半导体制造技术进步,使得集成电路成为可能。相对于手工组装电路使用个别的分立电子组件,集成电路可以把很大数量的微晶体管集成到一个小芯片,是一个巨大的进步。集成电路的规模生产能力,可靠性,电路设计的模块化方法确保了快速采用标准化IC 代替了设计使用离散晶体管。

  IC 对于离散晶体管有两个主要优势:成本和性能。成本低是由于芯片把所有的组件通过照相平版技术,作为一个单位印刷,而不是在一个时间只制作一个晶体管。性能高是由于组件快速开关,消耗更低能量,因为组件很小且彼此靠近。2006年,芯片面积从几平方毫米到350 mm2,每mm2可以达到一百万个晶体管。

  第一个集成电路雏形是由杰克·基尔比于1958年完成的,其中包括一个双极性晶体管,三个电阻和一个电容器。

  而根据处理信号的不同,可以分为模拟集成电路、数字集成电路、和兼具模拟与数字的混合信号集成电路。应用领域最先进的集成电路是微处理器或多核处理器的核心(cores),可以控制电脑到手机到数字微波炉的一切。存储器和ASIC是其他集成电路家族的例子,对于现代信息社会非常重要。虽然设计开发一个复杂集成电路的成本非常高,但是当分散到通常以百万计的产品上,每个IC的成本最小化。IC的性能很高,因为小尺寸带来短路径,使得低功率逻辑电路可以在快速开关速度应用。

  这些年来,IC 持续向更小的外型尺寸发展,使得每个芯片可以封装更多的电路。这样增加了每单位面积容量,可以降低成本和增加功能-见摩尔定律,集成电路中的晶体管数量,每两年增加一倍。总之,随着外形尺寸缩小,几乎所有的指标改善了-单位成本和开关功率消耗下降,速度提高。但是,集成纳米级别设备的IC不是没有问题,主要是泄漏电流(leakage current)。因此,对于最终用户的速度和功率消耗增加非常明显,制造商面临使用更好几何学的尖锐挑战。这个过程和在未来几年所期望的进步,在半导体国际技术路线图(ITRS)中有很好的描述。

  越来越多的电路以集成芯片的方式出现在设计师手里,使电子电路的开发趋向于小型化、高速化。越来越多的应用已经由复杂的模拟电路转化为简单的数字逻辑集成电路。制造过程流程

  使用单晶硅晶圆(或III-V族,如砷化镓)用作基层。然后使用微影、扩散、CMP等技术制成MOSFET或BJT等组件,然后利用微影、薄膜、和CMP技术制成导线,如此便完成芯片制作。因产品性能需求及成本考量,导线可分为铝制程和铜制程。

  IC 由很多重叠的层组成,每层由图像技术定义,通常用不同的颜色表示。一些层标明在哪里不同的掺杂剂扩散进基层(成为扩散层),一些定义哪里额外的离子灌输(灌输层),一些定义导体(多晶硅或金属层),一些定义传导层之间的连接(过孔或接触层)。所有的组件由这些层的特定组合构成。

  在一个自排列(CMOS)过程中,所有门层(多晶硅或金属)穿过扩散层的地方形成晶体管。

  因为CMOS设备只引导电流在逻辑门之间转换,CMOS设备比双级组件消耗的电流少很多。

  随机存取存储器(random access memory)是最常见类型的集成电路,所以密度最高的设备是存储器,但即使是微处理器上也有存储器。尽管结构非常复杂-几十年来芯片宽度一直减少-但集成电路的层依然比宽度薄很多。组件层的制作非常像照相过程。虽然可见光谱中的光波不能用来曝光组件层,因为他们太大了。高频光子(通常是紫外线)被用来创造每层的图案。因为每个特征都非常小,对于一个正在调试制造过程的过程工程师来说,电子显微镜是必要工具。

  在使用自动测试设备(ATE)包装前,每个设备都要进行测试。测试过程称为晶圆测试或晶圆探通。晶圆被切割成矩形块,每个被称为“die”。每个好的die 被焊在“pads”上的铝线或金线,连接到封装内,pads通常在die的边上。封装之后,设备在晶圆探通中使用的相同或相似的ATE上进行终检。测试成本可以达到低成本产品的制造成本的25%,但是对于低产出,大型和/或高成本的设备,可以忽略不计。

  在2005年,一个制造厂(通常称为半导体工厂,常简称fab,指fabrication facility)建设费用要超过10亿美金,因为大部分操作是自动化的。

  最早的集成电路使用陶瓷扁平封装,这种封装很多年来因为可靠性和小尺寸继续被军方使用。商用电路封装很快转变到双列直插封装(dual in-line package, DIP),开始是陶瓷,之后是塑料。1980年代,VLSI电路的针脚超过了DIP封装的应用限制,最后导致插针网格数组和leadless chip carrier(LCC)的出现。

  表面贴的封装在1980年代初期出现,80年代后期开始流行。他使用更细的脚间距,引脚形状为海鸥翼型或J型。以Small-Outline Integrated Circuit(SOIC)为例,比相等的DIP面积少30-50%,厚度少70%。这种封装在两个长边有海鸥翼型引脚突出,引脚间距为0.05英寸。

  Ball grid array(BGA)封装从1970年代开始出现,1990年代开发了比其他封装有更多管脚数的Flip-chip Ball Grid Array(FCBGA)封装。在FCBGA封装中,芯片(die)被上下翻转(flipped)安装,通过与PCB相似的基层而不是线与封装上的焊球连接。FCBGA封装使得输入输出信号阵列(称为I/O区域)分布在整个芯片的表面,而不是限制于芯片的外围。主要应用计算机芯片

  如果把中央处理器CPU比喻为整个电脑系统的心脏,那么主板上的芯片组就是整个身体的躯干。对于主板而言,芯片组几乎决定了这块主板的功能,进而影响到整个电脑系统性能的发挥,芯片组是主板的灵魂。

  芯片组(ChiPSet)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片。北桥芯片提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持。南桥芯片则提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、Ultra DMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持。其中北桥芯片起着主导性的作用,也称为主桥(Host Bridge)。

  与PCR技术一样,芯片技术已经开展和将要开展的应用领域非常的广泛。生物芯片的第一个应用领域是检测基因表达。但是将生物分子有序地放在芯片上检测生化标本的策略是具有广泛的应用领域,除了基因表达分析外,杂交为基础的分析已用于基因突变的检测、多态性分析、基因作图、进化研究和其它方面的应用,微阵列分析还可用于检测蛋白质与核酸、小分子物质及与其它蛋白质的结合,但这些领域的应用仍待发展。对基因组DNA进行杂交分析可以检测DNA编码区和非编码区单个碱基改变、确失和插入,DNA杂交分析还可用于对DNA进行定量,这对检测基因拷贝数和染色体的倍性是很重要的[2]。

  几十年来,科学家一直“训练”电脑,使其能够像人脑一样思考。这种挑战考验着科学的极限。IBM公司的研究人员18日表示,在将电脑与人脑结合在一起的研究道路上,他们取得了一项重大进展。

  这家美国科技公司研制出两个芯片原型,与此前的PC和超级计算机采用的芯片相比,这些芯片处理数据的方式与人脑处理信息的方式更为接近。这两个芯片是一项为期6年的项目取得的一项具有里程碑意义的重大成就。共有100名研究人员参与这一项目,美国政府的国防高级研究计划局(DARPA)提供了4100万美元资金。IBM的投资数额并未对外公布。

  两个芯片原型提供了进一步证据,证明“平行处理”日益提高的重要性。平行处理具体是指电脑同时处理多个任务。多任务处理对渲染图片和处理大量数据非常重要。迄今为止,这两个芯片仅用于处理一些非常简单的任务,例如操控一辆仿真车穿过迷宫或者玩《Pong》。它们最终走出实验室并应用于实际产品可能需要10年或者更长时间。

  日前,由瑞士、德国和美国的科学家组成的研究小组首次成功研发出一种新奇的微芯片,能够实时模拟人类大脑处理信息的过程。这项新成果将有助于科学家们制造出能同周围环境实时交互的认知系统,为神经网络计算机和高智能机器人的研制提供强有力的技术支撑。

  以前的类似研究都局限于在传统计算机上研制神经网络模型或在超级计算机上模拟复杂的神经网络,而新研究的思路是:研发在大小、处理速度和能耗方面都可与真实大脑相媲美的电路。研究小组成员基尔克莫·因迪韦里表示:“我们的目标是直接在微芯片上模拟生物神经元和突触的属性。”

  做到这一点面临的主要挑战,是配置由人造神经元组成的网络,让其能执行特定的任务。研究小组现在已经成功地攻克了这一“碉堡”,他们研发出一种被称为“神经形态芯片”(neuromorphic cHIPS)的装置,能够实时执行复杂的感觉运动任务,并借助这一装置,演示了一个需要短期记忆力和依赖语境的决策能力的任务,这是认知测试所必需的典型特征。

  研究小组把神经形态神经元与利用神经处理模块——相当于所谓“有限自动机”的网络相结合。有限自动机是一个用来描述逻辑过程和计算机程序的数学概念。行为可以表示为有限自动机,由此以自动化的方式转给神经形态硬件。因迪韦里说:“网络连接模式非常类似于在大脑中发现的结构。”

  由于神经形态芯片可以实时处理输入的信息并作出回应,有关专家认为这项技术将有望走向实用化,从而允许机器人在复杂环境中,在不受人类远程遥控的情况下实现自动作业。

  这项技术的采用还将有望在未来让计算机能够在有部件损坏的情况下继续运作,就像人类的大脑那样,每天损失数以百万计的脑细胞,但是其整体的思维能力却仍然继续正常运转。

  欧盟、美国和瑞士目前正在紧锣密鼓地研制模拟大脑处理信息的神经网络计算机,希望通过模拟生物神经元复制人工智能系统。这种新型计算机的“大脑芯片”迥异于传统计算机的“大脑芯片”。它能运用类似人脑的神经计算法,低能耗和容错性强是其最大优点,较之传统数字计算机,它的智能性会更强,在认知学习、自动组织、对模糊信息的综合处理等方面也将前进一大步。

  不过也有人表示了担忧:装上这种芯片的机器人将来是否会在智能上超越人类,甚至会对人类造成威胁?

  不少科学家认为,这类担心是完全没有必要的。就智能而言,目前机器人的智商相当于4岁儿童的智商,而机器人的“常识”比起正常成年人就差得更远了。美国科学家罗伯特·斯隆日前说:“我们距离能够以8岁儿童的能力回答复杂问题的、具有常识的人工智能程序仍然很遥远。”日本科学家广濑茂男也认为:即使机器人将来具有常识并能进行自我复制,也不可能对人类造成威胁。值得一提的是,中国科学家周海中在1990年发表的《论机器人》一文中指出:机器人并非无所不能;它在工作强度、运算速度和记忆功能方面可以超越人类,但在意识、推理等方面不可能超越人类。另外,机器人会越来越“聪明”,但只能按照制定的原则纲领行动,服务人类、造福人类。制作使用芯片制备

  生物芯片的制备主要依赖于微细加工、自动化及化学合成技术。根据不同的使用要求,可以采用微加工技术在芯片的基底材料上加工出各种微细结构,然后再施加必要的生物化学物质并进行表面处理。而更为简单的芯片制备如DNA芯片的制备,则是在基底上利用自动化或化学合成方法直接施加或合成必要的生物化学物质,对基底材料并不做任何微细加工。通常比较典型的DNA芯片制备方法有4种。第1种是Affymetrix公司开发的光引导原位合成法。该方法是微加工技术中光刻工艺与光化学合成法相结合的产物。第2种方法是Incyte Pharmaceutical公司采用的化学喷射法。该方法是将合成好的寡核苷酸探针定点喷射到芯片上并加以固定化来制作DNA芯片。第3种方法是斯坦福大学研制的接触式点涂法,在DNA芯片制备中通过高速精密机械手的精确移动让移液头与玻璃芯片接触而将DNA探针涂敷在芯片上。第4种方法是通过使用4支分别装有A,T,G,C核苷的压电喷头在芯片上并行合成出DNA探针。不管何种方法,目的都是希望能快速、准确地将探针放置到芯片上的指定位置上。

  分离和纯化核酸样品并不是一件容易的工作,它包括了细胞分离、破胞、脱蛋白、提取DNA等多方面的工作.在细胞分离方法上较突出的有过滤分离(如宾夕法尼亚大学研究小组开发的横坝式过滤芯片)和介电电泳分离(利用施加在芯片上的高频非均匀电场在不同的细胞内诱导出偶电极,导致细胞受不同的介电力作用,从而把它们从样品中分离出来)等。

  因为所用检测仪器的灵敏度还不够高,因此从血液或活体组织中提取的DNA在标记和应用前都需要扩增复制.例如,在对一个肿瘤的活体解剖样品进行检测时,需要在几千个正常基因中找到一个异常的癌基因,很显然这需要对样品DNA进行必要和特有的复制才易于检测。芯片中的核酸扩增研究已有了很大的进展,在芯片中进行PCR获得成功的有宾夕法尼亚大学研究小组、美国加州Lawrence Livermore国家实验室、Perkin-Elmer公司和伦敦帝国理工大学.宾夕法尼亚大学研究小组所做的扩增反应是在硅-玻璃芯片中进行的,芯片的外部加热和冷却采用的是计算机控制的Peltier电热器。他们成功地在硅-玻璃芯片中完成了一系列不同的核酸扩增反应,例如RT-PCR,LCR,多重PCR和rence Livermore国家实验室加工的硅芯片采用了芯片内置式薄膜多晶硅加热套,使其升降温的速度可以得到极大的提高。Perkin-Elmer公司的PCR反应则是在塑料芯片上完成的.伦敦帝国理工大学Manz领导的研究小组研制了一种样品可在不同温度的恒温区间内连续流动的PCR芯片。

  普通的PCR有一定的不足之处,如难以实现多重扩增以及在PCR过程中存在竞争等.Mosaic Technologies公司的研究人员研究出了固相PCR系统,他们将两个引物固化在丙烯酰胺薄膜上,并让其与DNA模板和PCR试剂接触,这样便可在固相表面进行PCR反应。扩增时所合成的DNA会在引物间形成桥,从而避免了竞争问题.该系统还处于研究阶段。在核酸样品制备中另一个革新的方法是Lynx Therapeutics公司研究的大规模并行固相克隆,该方法可以同时在样品中克隆出成百上千个单独的DNA片段.

  常用的芯片检测方法有芯片毛细管电泳分离检测和亲和结合分析。芯片毛细管电泳是1983年由Dupont公司的Pace开发出来的.随后,瑞士的Ciba Geigy公司和加拿大的Alberta大学合作利用玻璃芯片毛细管电泳完成了对寡核苷酸的分离.首次用芯片毛细管阵列电泳检测DNA突变和对DNA进行测序工作的是由加利福尼亚大学伯克利分校Mathies领导的研究小组完成的.通过在芯片上加上高压直流电,他们在近2 min的时间内便完成了从118~1 353 bp的多条DNA片段的快速分离。宾夕法尼亚大学Wilding的小组与Ramsey的小组一道用芯片毛细管电泳对芯片中通过多重扩增得到的用于Duchenne-Becker肌萎缩诊断的若干DNA片段进行分离也获得了成功.其他用芯片毛细管电泳检测突变的外国公司和学术机构有Perkin-Elmer公司、Caliper Technologies公司、Aclara Biosciences公司和麻省理工学院等。

  对DNA芯片而言,亲和结合分析主要是通过核酸之间的杂交结合来进行的.杂交的复杂程度取决于芯片上探针的长度和被测DNA片段的长度以及DNA二级结构的稳定度。利用杂交可进行杂交重复测序、DNA突变检测和基因表达分析.杂交重复测序的过程是:将含有与探针序列互补的单链DNA与其他DNA的混合物置于芯片上,固化的探针就会通过与其序列互补的DNA片段杂交而将其从很复杂的混合样品中识别出来,通过使用带有计算机的荧光检测系统对芯片上检测出来的DNA样品所发出的荧光强弱及各探针的已知序列进行分析、对照和组合就可以得知样品DNA所含的碱基序列。1996年Science对应用芯片杂交技术进行杂交重复测序作了报道,Chee等人在一块固化有135 000个寡聚核苷酸探针(每个探针长度为25个核苷)的硅芯片上对长度为16.6 kb的整个人线粒体DNA进行了序列测定。每组探针之间的间隔为35 μm,重复测序精度为99%;此外通过对11个非洲人个体样品斑点进行分析,他们发现在这些样品中的线粒体DNA中所存在的突变多态性达505个.用生物芯片从事杂交测序的美国公司现有Affymetrix和Hyseq两家,Affymetrix还开发了一套系统(gene chip bioinformation system),将芯片测序与生物信息学联系在一起,测序结果直接进入数据库做下一步的分析。利用杂交分析DNA的一个重要应用是进行DNA突变检测,例如Hacia等人采用由96 000个寡核苷酸探针所组成的杂交芯片,完成了对遗传性乳腺癌和卵巢肿瘤基因BRCA1中外显子上的24个异合突变点(单核苷突变多态性)的检测.他们通过引入参照信号和被检测信号之间的色差分析使得杂交的特异性和检测灵敏度获得了提高。用生物芯片做杂交突变检测的美国公司有Beckman,Abbot Laboratory,Affymetrix,Nanogen,Sarnoff,Genometrix,Vysis,Hyseq,Molecular Dynamics等;英美学术机构有宾夕法尼亚大学,牛津大学,Naval Research,Whitehead Institute for Biomedical Research,Argonne国家实验室等.利用芯片杂交对基因表达进行分析研究是DNA芯片的另一个主要用途。一般来说,对基因表达进行研究需要相对较长的杂交时间,不需要准确地测序,而主要是了解基因中独特的Motifs结构.基因表达的分析研究给疾病诊断和药物筛选带来了巨大的冲击。Lockhart等人采用固化有65 000个不同序列探针(长度为20个核苷)的芯片,定量地分析了一个小鼠T细胞中整个RNA群体中21个各不相同的信使RNA,这些专门设计的探针能与114个已知的小鼠基因杂交.分析结果发现,在诱发细胞分裂后另外20个信使RNA的表达也发生了改变。检测结果表明该系统对RNA的检出率为1:300 000,对信使RNA的定量基准为1:300.DeRisi等人将一个恶性肿瘤细胞线个不同的cDNA探针通过机械手“刷印”到载玻片上以观察癌基因的表达情况。在比较两个标有不同荧光标记的细胞信使RNA群的杂交结果之后,他们对引入正常人染色体后肿瘤基因受到抑制的细胞中的基因表达结果进行了分析.微阵列芯片不仅在基因分析上获得成功,研究人员更是将该技术与其他相关领域相结合,使得微阵列技术的应用更加广泛.

  对基因芯片的制作者和用户来说,在芯片上从事杂交所获得的结果并不是很完美的,存在着一些问题。首先,阵列上的杂交不是一个简单的液相反应,而是液-固反应,使得DNA链并不能在完全游离的情况下自然地杂交结合在一起;而且DNA的二级结构也会导致失真的杂交结果(链内杂交问题).针对后一个问题,人们又研究出通过使用peptide nucleic acids(PNA)探针来解决链内杂交问题的新方案。在PNA-DNA杂交过程中,用PNA制作的探针比用DNA作的探针更容易接近DNA的目标序列.相比之下,PNA-DNA杂交结构比DNA-DNA杂交结构更稳定,所以对错配也就更易检测。让DNA在芯片表面富集是提高在芯片上DNA并行杂交速度的一个措施之一.Nanogen公司所开发的主动式电子生物芯片,可以使被检测的DNA/RNA分子以很快的速度接近被固化的DNA探针,从而使杂交速度得到极大的提高。

  大多数的DNA芯片分析采用的是荧光检测.荧光检测重复性好是研究人员广泛使用的一种方法。除此之外,还有飞行时间质谱仪、光波导、二极管阵列检测、直接电量变化检测等.例如,美国Sequenom公司采用光敏连接技术,将探针通过光敏基团连接在芯片上。当杂交结束后,利用激光切割释放寡聚核苷酸并用飞行时间质谱仪进行检测.该公司只能对较短的DNA片段进行分析,最终是否能实现对长序列DNA做分析还有待进一步努力。威斯康星大学的Smith等人也用PNA探针和飞行时间质谱仪分析了人体内酪氨酸酶基因的多态位点.不管是何种检测系统,都需要利用一些必要的仪器与软件,如扫描共聚焦显微镜可以在微米级的分辨率下检测芯片表面数以千计的探针杂交结果,很多公司也为芯片的分析开发了相应的软件,以便快速地对杂交数据进行处理和分析。除了上述通过杂交获得分析结果的微小阵列芯片以外,还有其他多种具有不同微结构(如微通道、反应腔、过滤器等等)的芯片正在研制和开发中,这些芯片的大小一般为1 cm2.生物芯片的研究在80年代就已开始,如杜邦公司研究的芯片毛细管电泳技术。已开发的生物芯片种类越来越多,如毛细管电泳芯片、细胞分离芯片、免疫芯片、质谱分析芯片、核酸扩增芯片等,所有这些芯片的研究与开发为以后分析仪器的微型化和缩微芯片实验室的实现打下了良好的基础.

  与微加工技术朝纳米尺度发展一样,某些种类的生物芯片的研究也正在朝向纳米量级发展。研究人员发现一些天然分子或分子的生物自组装能力完全可以用于制作纳米器件.例如,用胶原质做导线,抗体做夹子,DNA做存储器,膜蛋白做泵等等。虽然尚无成功的纳米芯片出现.人们利用分子的自组装特性制作了一些结构,如直径为0.5 μm、长30 μm的脂质管;直径0.7 μm的圆形多肽纳米管和显微分子齿轮等。这些利用分子来设计和装配仪器零件类似物的研究,为纳米芯片的开发打下了良好的基础.

  对生物芯片研究人员来说,最终的研究目标是对分析的全过程实现全集成,即制造微型全分析系统(micro total analytical systems)或缩微芯片实验室(laboratory-on-a-chip)。在芯片的功能集成方面,已有了一批成果.首先,美国Nanogen公司、Affymetrix公司、宾夕法尼亚大学医学院和密西根大学的科学家们通过利用在芯片上制作出的加热器、阀门、泵、微量分析器、电化学检测器或光电子学检测器等,将样品制备、化学反应和检测3部分作了部分集成,并在此基础上先后制作出了结构不同的缩微芯片实验室样机.例如,Nanogen公司的科学家采用生物电子芯片在较短时间内先通过施加高频交流电场把微生物从人的血样中分离出来,然后用电脉冲进行破胞处理,最后对破胞后所得的脱氧核糖核酸进行片段化和杂交检测。该实验的成功是生物芯片研究领域的一大突破,它向人们展示了用生物芯片制作缩微实验室的可能性.

  生物芯片技术另外一个重要、且具有很强应用价值的发展方向就是为新药的开发提供高通量乃至超高通量筛选的技术平台.该项技术是将生物芯片技术所具有的高集成度与组合化学技术、受体结合分析及机器人自动化技术等相结合而产生的。组合化学是利用高分子载体快速同步合成先导物的类似物和衍生物的一种化学方法,它使过去的衍生物个体化合成方式发展成以串联和并联方式同步合成数以千计乃至数万个化合物的组合合成方式.反应后先对混合物进行分组筛选,然后根据生物活性再决定是否对个别化合物进行分离纯化。这种根据母体化合物结构快速合成化合物群体,其结构范围又可以预测的方法能很快建立起庞大的化学衍生物库,使得先导化合物的化学修饰进程得以大大加快.利用生物芯片技术还能对天然植物成分进行筛选和分析,这在中药的现代化发展中非常有用。生物芯片技术的介入及相关的微量液体分配技术及各种检测技术的采用,将使新药的研究与开发在技术上有一个较大的突破,从而加速新药筛选市场的开发,已有多家公司正在从事这类研究与开发工作.

  生物芯片技术是一项综合性的高新技术,它涉及生物、化学、医学、精密加工、光学、微电子技术,信息等领域,是一个学科交叉性很强的研究项目。虽然生物芯片的研究已有了巨大的发展,但一些相关技术如检测技术的发展制约了生物芯片技术的进一步发展.这是因为随着芯片集成度的提高,所用反应物量的减少,其产生的信号也越来越微弱,因而,对高精度检测器的要求迫在眉睫。此外,微加工技术、芯片的封装和保存等也是在生物芯片的研发中应注重的方面.经过近十多年的不懈努力,生物芯片技术已开始从不成熟逐步走向成熟,并已开始给生命科学研究的许多领域开始带来冲击甚至是革命。2013年1月Nature Genetics出了一期关于微阵列芯片技术的增刊,全面介绍了该技术的发展状况及几个主要应用领域,如重复测序和突变检测、基因表达分析、新药开发、生物信息学、群体遗传学研究等.由此我们可以看出微阵列芯片技术的重要性。对于生物芯片而言,微阵列芯片才只是其中一种检测芯片,与其并级的还有其他多种具有不同功能的芯片.单是其中一种技术就有如此重大的影响力,对生物芯片技术来说,它所能带来的重大意义和深远影响将是不可估量的。从样品的制备、化学反应到检测这三部分的分部集成已实现,全集成已初见端倪.到21世纪生物芯片市场的销售将达百亿美元以上,所以世界各国的公司、研究机构都在积极地进行研究、申请专利、开发新产品,争取早日登陆市场。较早涉足该领域的以美国为首的英、加、荷、德、日等几个国家已经取得了令人眩目的成就.面对这样的情况,我国应及早投入一定的财力、人力和物力,争取在该领域中占有一席之地,避免出现在很多高技术产业中那样技术几乎全被外国人垄断的局面。争取在基因和蛋白质表达芯片,微缩芯片实验室和超高通量药物筛选等方面有自己独到的创新和作为.

爱游戏app官方网站手机版:【芯片】芯片先容-万通百科(图1)

  原装进口霍尔芯片ar312磁控开关是一款为高灵敏度、低功耗、高精度应用而开发的磁传感器,集成了tmr和cmos技术。ar312采用高精度推挽半桥tmr磁传感器和cmos集成电路,包括tmr电压发生器,比较器,施密特触发器

  纳米二氧化硅(英文名称nano-silicon dioxide)是一种无机化工材料,俗称白炭黑。由于是超细纳米级,尺寸范围在1~100nm,因此具有许多独特的性质,如具有对抗紫外线的光学性能,能提高其他材料抗老化、强度和耐化学性能。用途非常广泛。纳米级二氧化硅为无定形白色粉末,无毒、无味、无污染,微结构为球形,呈絮状和网状的准颗粒结构,分子式和结构式为SiO2,不溶于水。 纳米是一个尺度,为10米,纳米材料是指在三维空间中,至少有一维处于纳米尺寸的范围,也即1~100纳米的范围。纳米材料具有小尺寸效应、表面效应和宏观量子随药效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等有广泛的应用前景。

  伺服驱动器(servo drives)又称为伺服控制器、伺服放大器,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。

  多面棱体是一种高精度标准器具,主要用于检定光学分度头、分度台、测角仪等圆分度仪器的分度误差。

  水泥凝结时间测定仪符合GB/T1346、ASTMC187、ISO9597标准要求,主要用于水泥标准稠度用水量、凝结时间和由游离氧化钙造成的体积安定性的测试方法。适用于硅酸盐水泥、普通水泥、矿渣水泥、火山灰水泥、粉煤灰水泥以及指定采用本方法的其他品种水泥。

  利用机械传递位移的方法,将两个基准点间的相对位移转变为数显位移计的两次读数差芯片

  自动雨量站是用于测量并记录各种雨量信息的综合观测仪器。具有抗干扰能力强,全户外设计,测量精度高,存储容量大,方便组网,全自动无人值守,运行稳定等特点,适用于气象、水利、水文、农业、环保、建筑等行业。 自动雨量站由数据采集仪、翻斗雨量传感器、上位机软件、通讯单元及供电系统等部分构成。

  智能操作器又称智能手操器,可自动接系统(或调节仪)的给定信号和阀位的反馈信号,根据二者的偏差进行调节,输出相应的控制量,并可取代小功率伺服放大器直接驱动阀门,可接在各种调节器或计算机控制系统之后作备用仪表。